On birational boundedness of foliated surfaces

نویسندگان

چکیده

Abstract In this paper we prove a result on the effective generation of pluri-canonical linear systems foliated surfaces general type. Fix function {P:\mathbb{Z}_{\geq 0}\to\mathbb{Z}} , then there exists an integer {N>0} such that if {(X,{\mathcal{F}})} is canonical or nef model foliation type with Hilbert polynomial {\chi(X,{\mathcal{O}}_{X}(mK_{\mathcal{F}}))=P(m)} for all {m\in\mathbb{Z}_{\geq 0}} {|mK_{\mathcal{F}}|} defines birational map {m\geq N} . On way, also Grauert–Riemenschneider-type vanishing theorem singularities.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Birational Boundedness of Fano Fibrations

We investigate birational boundedness of Fano varieties and Fano fibrations. We establish an inductive step towards birational boundedness of Fano fibrations via conjectures related to boundedness of Fano varieties and Fano fibrations. As corollaries, we provide approaches towards birational boundedness and boundedness of anti-canonical volumes of varieties of -Fano type. Furthermore, we show b...

متن کامل

Piecewise Morphisms of Birational Foliated Varieties

In this article, we study birational varieties with 1-dimensional foliation and induced piecewise morphisms. Let X and Y be smooth complete complex varieties. Consider a birational map f : X · · · → Y . By definition, f is not generally defined all over X. We observe that if X has some one-dimensional foliation, it is possible to extend f to the whole space X as a piecewise morphism (that is, a...

متن کامل

On the Height of Foliated Surfaces with Vanishing Kodaira Dimension

We prove that the height of a foliated surface of Kodaira dimension zero belongs to {1, 2, 3, 4, 5, 6, 8, 10, 12}. We also construct an explicit projective model for Brunella’s very special foliation.

متن کامل

Castelnuovo’s Criterion and Birational Geometry of Surfaces

We define and discuss the definition of a blowup, and then we study the birational geometry of projective surfaces, following Hartshorne chapter V and finishing with Castelnuovo’s criterion and minimal models. Much of the material from Hartshorne chapter II is used without comment. More advanced material is occasionally used without proof but citations are given.

متن کامل

Birational Modifications of Surfaces via Unprojections

We describe elementary transformations between minimal models of rational surfaces in terms of unprojections. These do not fit into the framework of Kustin–Miller unprojections as introduced by Papadakis and Reid, since we have to leave the world of projectively Gorenstein varieties. Also, our unprojections do not depend on the choice of the unprojection locus only, but need extra data correspo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Crelle's Journal

سال: 2021

ISSN: ['1435-5345', '0075-4102']

DOI: https://doi.org/10.1515/crelle-2020-0009